1,302 research outputs found

    A possible cooling effect in high temperature superconductors

    Full text link
    We show that an adiabatic increase of the supercurrent along a superconductor with lines of nodes of the order parameter on the Fermi surface can result in a cooling effect. The maximum cooling occurs if the supercurrent increases up to its critical value. The effect can also be observed in a mixed state of a bulk sample. An estimate of the energy dissipation shows that substantial cooling can be performed during a reasonable time even in the microkelvin regime.Comment: 5 pages, to appear in Phys. Rev.

    Combined Paramagnetic and Diamagnetic Response of YBCO

    Full text link
    It has been predicted that the zero frequency density of states of YBCO in the superconducting phase can display interesting anisotropy effects when a magnetic field is applied parallel to the copper-oxide planes, due to the diamagnetic response of the quasi-particles. In this paper we incorporate paramagnetism into the theory and show that it lessens the anisotropy and can even eliminate it altogether. At the same time paramagnetism also changes the scaling with the square root of the magnetic field first deduced by Volovik leading to an experimentally testable prediction. We also map out the analytic structure of the zero frequency density of states as a function of the diamagnetic and paramagnetic energies. At certain critical magnetic field values we predict kinks as we vary the magnetic field. However these probably lie beyond currently accessible field strengths

    Repulsive Casimir Force: Sufficient Conditions

    Full text link
    In this paper the Casimir energy of two parallel plates made by materials of different penetration depth and no medium in between is derived. We study the Casimir force density and derive analytical constraints on the two penetration depths which are sufficient conditions to ensure repulsion. Compared to other methods our approach needs no specific model for dielectric or magnetic material properties and constitutes a complementary analysis.Comment: 11 pages. 3 figures. Misprints corrected in Eq. (4

    Immunological Characterization and Neutralizing Ability of Monoclonal Antibodies Directed Against Botulinum Neurotoxin Type H.

    Get PDF
    BackgroundOnly Clostridium botulinum strain IBCA10-7060 produces the recently described novel botulinum neurotoxin type H (BoNT/H). BoNT/H (N-terminal two-thirds most homologous to BoNT/F and C-terminal one-third most homologous to BoNT/A) requires antitoxin to toxin ratios ≥1190:1 for neutralization by existing antitoxins. Hence, more potent and safer antitoxins against BoNT/H are needed.MethodsWe therefore evaluated our existing monoclonal antibodies (mAbs) to BoNT/A and BoNT/F for BoNT/H binding, created yeast-displayed mutants to select for higher-affinity-binding mAbs by using flow cytometry, and evaluated the mAbs' ability to neutralize BoNT/H in the standard mouse bioassay.ResultsAnti-BoNT/A HCC-binding mAbs RAZ1 and CR2 bound BoNT/H with high affinity. However, only 1 of 6 BoNT/F mAbs (4E17.2A) bound BoNT/H but with an affinity >800-fold lower (equilibrium dissociation binding constant [KD] = 7.56 × 10(-8)M) than its BoNT/F affinity (KD= 9.1 × 10(-11)M), indicating that the N-terminal two-thirds of BoNT/H is immunologically unique. The affinity of 4E17.2A for BoNT/H was increased >500-fold to KD= 1.48 × 10(-10)M (mAb 4E17.2D). A combination of mAbs RAZ1, CR2, and 4E17.2D completely protected mice challenged with 280 mouse median lethal doses of BoNT/H at a mAb dose as low as 5 µg of total antibody.ConclusionsThis 3-mAb combination potently neutralized BoNT/H and represents a potential human antitoxin that could be developed for the prevention and treatment of type H botulism

    Orientation-dependent Casimir force arising from highly anisotropic crystals: application to Bi2Sr2CaCu2O8+delta

    Full text link
    We calculate the Casimir interaction between parallel planar crystals of Au and the anisotropic cuprate superconductor Bi2Sr2CaCu2O8+delta (BSCCO), with BSCCO's optical axis either parallel or perpendicular to the crystal surface, using suitable generalizations of the Lifshitz theory. We find that the strong anisotropy of the BSCCO permittivity gives rise to a difference in the Casimir force between the two orientations of the optical axis, which depends on distance and is of order 10-20% at the experimentally accessible separations 10 to 5000 nm.Comment: 5 pages, 3 figures. Accepted for publication in Physical Review

    On the torque on birefringent plates induced by quantum fluctuations

    Full text link
    We present detailed numerical calculations of the mechanical torque induced by quantum fluctuations on two parallel birefringent plates with in plane optical anisotropy, separated by either vacuum or a liquid (ethanol). The torque is found to vary as sin(2θ)\sin(2\theta), where θ\theta represents the angle between the two optical axes, and its magnitude rapidly increases with decreasing plate separation dd. For a 40 μ\mum diameter disk, made out of either quartz or calcite, kept parallel to a Barium Titanate plate at d100d\simeq 100 nm, the maximum torque (at θ=π4\theta={\pi\over 4}) is of the order of 1019\simeq 10^{-19} N\cdotm. We propose an experiment to observe this torque when the Barium Titanate plate is immersed in ethanol and the other birefringent disk is placed on top of it. In this case the retarded van der Waals (or Casimir-Lifshitz) force between the two birefringent slabs is repulsive. The disk would float parallel to the plate at a distance where its net weight is counterbalanced by the retarded van der Waals repulsion, free to rotate in response to very small driving torques.Comment: 7 figures, submitted to Phys. Rev.

    A General Approach to Casimir Force Problems Based on Local Reflection Amplitudes and Huygen's Principle

    Full text link
    In this paper we describe an approach to Casimir Force problems that is ultimately generalizable to all fields, boundary conditions, and cavity geometries. This approach utilizes locally defined reflection amplitudes to express the energy per unit area of any Casimir interaction. To demonstrate this approach we solve a number of Casimir Force problems including the case of uniaxial boundary conditions in a parallel-plate cavity.Comment: 9 pages, 5 figures, Equation 18 has been corrected, [v1] contained a typ
    corecore